Finite Volume Element Approximation for the Elliptic Equation with Distributed Control

In this paper, we consider a priori error estimates for the finite volume element schemes of optimal control problems, which are governed by linear elliptic partial differential equation. The variational discretization approach is used to deal with the control. The error estimation shows that the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of differential equations 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Wang, Quanxiang, Zhang, Zhiyue, Zhao, Tengjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a priori error estimates for the finite volume element schemes of optimal control problems, which are governed by linear elliptic partial differential equation. The variational discretization approach is used to deal with the control. The error estimation shows that the combination of variational discretization and finite volume element formulation allows optimal convergence. Numerical results are provided to support our theoretical analysis.
ISSN:1687-9643
1687-9651
DOI:10.1155/2018/4753792