Fingerprinting the Cretaceous-Paleogene boundary impact with Zn isotopes

Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-07, Vol.12 (1), p.4128-4128, Article 4128
Hauptverfasser: Mathur, Ryan, Mahan, Brandon, Spencer, Marissa, Godfrey, Linda, Landman, Neil, Garb, Matthew, Graham Pearson, D., Liu, Sheng-Ao, Oboh-Ikuenobe, Francisca E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where partial vaporization of Zn leaves the residuum enriched in its heavy isotopes. Here, we present Zn isotope data for sedimentary rock layers of the K-Pg boundary, which display heavier Zn isotope compositions and lower Zn concentrations relative to surrounding sedimentary rocks, the carbonate platform at the impact site, and most carbonaceous chondrites. Neither volcanic events nor secondary alteration during weathering and diagenesis can explain the Zn concentration and isotope signatures present. The systematically higher Zn isotope values within the boundary layer sediments provide an isotopic fingerprint of partially evaporated material within the K-Pg boundary layer, thus earmarking Zn volatilization during impact and subsequent ejecta transport associated with an impact at the K-Pg. Elevated Zn isotope compositions occur in K-Pg sedimentary layers of three different depositional environments across North America and the Caribbean. The data indicate a volatilization event, and act as a robust mechanistic indicator of the meteorite impact at the end of the Cretaceous.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24419-8