Partition functions of non-Lagrangian theories from the holomorphic anomaly

A bstract The computation of the partition function in certain quantum field theories, such as those of the Argyres-Douglas or Minahan-Nemeschansky type, is problematic due to the lack of a Lagrangian description. In this paper, we use the holomorphic anomaly equation to derive the gravitational cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-07, Vol.2023 (7), p.195-37, Article 195
Hauptverfasser: Fucito, Francesco, Grassi, Alba, Morales, Jose Francisco, Savelli, Raffaele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract The computation of the partition function in certain quantum field theories, such as those of the Argyres-Douglas or Minahan-Nemeschansky type, is problematic due to the lack of a Lagrangian description. In this paper, we use the holomorphic anomaly equation to derive the gravitational corrections to the prepotential of such theories at rank one by deforming them from the conformal point. In the conformal limit, we find a general formula for the partition function as a sum of hypergeometric functions. We show explicit results for the round sphere and the Nekrasov-Shatashvili phases of the Ω background. The first case is relevant for the derivation of extremal correlators in flat space, whereas the second one has interesting applications for the study of anharmonic oscillators.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2023)195