Advances in automatic identification of flying insects using optical sensors and machine learning

Worldwide, farmers use insecticides to prevent crop damage caused by insect pests, while they also rely on insect pollinators to enhance crop yield and other insect as natural enemies of pests. In order to target pesticides to pests only, farmers must know exactly where and when pests and beneficial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-01, Vol.11 (1), p.1555-1555, Article 1555
Hauptverfasser: Kirkeby, Carsten, Rydhmer, Klas, Cook, Samantha M., Strand, Alfred, Torrance, Martin T., Swain, Jennifer L., Prangsma, Jord, Johnen, Andreas, Jensen, Mikkel, Brydegaard, Mikkel, Græsbøll, Kaare
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide, farmers use insecticides to prevent crop damage caused by insect pests, while they also rely on insect pollinators to enhance crop yield and other insect as natural enemies of pests. In order to target pesticides to pests only, farmers must know exactly where and when pests and beneficial insects are present in the field. A promising solution to this problem could be optical sensors combined with machine learning. We obtained around 10,000 records of flying insects found in oilseed rape ( Brassica napus ) crops, using an optical remote sensor and evaluated three different classification methods for the obtained signals, reaching over 80% accuracy. We demonstrate that it is possible to classify insects in flight, making it possible to optimize the application of insecticides in space and time. This will enable a technological leap in precision agriculture, where focus on prudent and environmentally-sensitive use of pesticides is a top priority.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-81005-0