Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations
We are concerned with the following p -biharmonic equations: Δ p 2 u + M ( ∫ R N Φ 0 ( x , ∇ u ) d x ) div ( φ ( x , ∇ u ) ) + V ( x ) | u | p − 2 u = λ f ( x , u ) in R N , where 2 < 2 p < N , Δ p 2 u = Δ ( | Δ u | p − 2 Δ u ) , the function φ ( x , v ) is of type | v | p − 2 v , φ ( x , v )...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2019-07, Vol.2019 (1), p.1-17, Article 125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We are concerned with the following
p
-biharmonic equations:
Δ
p
2
u
+
M
(
∫
R
N
Φ
0
(
x
,
∇
u
)
d
x
)
div
(
φ
(
x
,
∇
u
)
)
+
V
(
x
)
|
u
|
p
−
2
u
=
λ
f
(
x
,
u
)
in
R
N
,
where
2
<
2
p
<
N
,
Δ
p
2
u
=
Δ
(
|
Δ
u
|
p
−
2
Δ
u
)
, the function
φ
(
x
,
v
)
is of type
|
v
|
p
−
2
v
,
φ
(
x
,
v
)
=
d
d
v
Φ
0
(
x
,
v
)
, the potential function
V
:
R
N
→
(
0
,
∞
)
is continuous, and
f
:
R
N
×
R
→
R
satisfies the Carathéodory condition. We study the existence of weak solutions for the problem above via mountain pass and fountain theorems. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-019-1237-6 |