High-Sensitivity Detection of Carbon Fiber-Reinforced Polymer Delamination Using a Novel Eddy Current Probe

The demand for non-destructive testing of carbon fiber-reinforced polymer (CFRP) is becoming increasingly pressing to ensure its safety and reliability across different fields of use. However, the complex structural characteristics and anisotropic bulk conductivity of CFRP make achieving high sensit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-05, Vol.14 (9), p.3765
Hauptverfasser: Zhou, Yingni, Ye, Bo, Cao, Honggui, Zou, Yangkun, Zhu, Zhizhen, Xing, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand for non-destructive testing of carbon fiber-reinforced polymer (CFRP) is becoming increasingly pressing to ensure its safety and reliability across different fields of use. However, the complex structural characteristics and anisotropic bulk conductivity of CFRP make achieving high sensitivity in detecting internal defects such as delamination extremely challenging. To address this issue, a novel triple rectangular coil probe with high sensitivity developed for detecting delamination in CFRP is presented in this paper. A finite element model using COMSOL Multiphysics was developed for CFRP delamination eddy current testing with the designed probe. Based on this model, the probe parameters were determined through orthogonal experiments. By analyzing the eddy current distribution in CFRP samples, the scanning mode was defined. Following this, the detection voltage was evaluated for various delamination parameters, and the sensitivity of different probes was compared. Results indicate that, under the same excitation coil parameters, for a 5 mm delamination lateral dimension change, the single pancake and single rectangular coil probes exhibit sensitivities of 88.24% and 72.55%, respectively, compared with the designed probe. For a 0.5 mm delamination thickness change, their sensitivities are 49.04% and 56.69% of those of the designed probe. The designed probe meets the demand for high-sensitivity detection.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14093765