Clinical measures, radiomics, and genomics offer synergistic value in AI-based prediction of overall survival in patients with glioblastoma

Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-05, Vol.12 (1), p.8784-8784, Article 8784
Hauptverfasser: Fathi Kazerooni, Anahita, Saxena, Sanjay, Toorens, Erik, Tu, Danni, Bashyam, Vishnu, Akbari, Hamed, Mamourian, Elizabeth, Sako, Chiharu, Koumenis, Costas, Verginadis, Ioannis, Verma, Ragini, Shinohara, Russell T., Desai, Arati S., Lustig, Robert A., Brem, Steven, Mohan, Suyash, Bagley, Stephen J., Ganguly, Tapan, O’Rourke, Donald M., Bakas, Spyridon, Nasrallah, MacLean P., Davatzikos, Christos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-12699-z