Cones generated by a generalized fractional maximal function
The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are con...
Gespeichert in:
Veröffentlicht in: | Қарағанды университетінің хабаршысы. Математика сериясы 2023-01, Vol.110 (2), p.53-62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-maximal function in a rearrangementinvariant space is investigated. This question reduces to the embedding of the considered cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rearrangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtigareeva, G. Karshygina and others. |
---|---|
ISSN: | 2518-7929 2663-5011 |
DOI: | 10.31489/2023m2/53-62 |