A Novel Multi-Model High Spatial Resolution Method for Analysis of DCE MRI Data: Insights from Vestibular Schwannoma Responses to Antiangiogenic Therapy in Type II Neurofibromatosis

This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2023-09, Vol.16 (9), p.1282
Hauptverfasser: Li, Ka-Loh, Lewis, Daniel, Zhu, Xiaoping, Coope, David J, Djoukhadar, Ibrahim, King, Andrew T, Cootes, Timothy, Jackson, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to develop and evaluate a new DCE-MRI processing technique that combines LEGATOS, a dual-temporal resolution DCE-MRI technique, with multi-kinetic models. This technique enables high spatial resolution interrogation of flow and permeability effects, which is currently challenging to achieve. Twelve patients with neurofibromatosis type II-related vestibular schwannoma (20 tumours) undergoing bevacizumab therapy were imaged at 1.5 T both before and at 90 days following treatment. Using the new technique, whole-brain, high spatial resolution images of the contrast transfer coefficient (Ktrans), vascular fraction (vp), extravascular extracellular fraction (ve), capillary plasma flow (Fp), and the capillary permeability-surface area product (PS) could be obtained, and their predictive value was examined. Of the five microvascular parameters derived using the new method, baseline PS exhibited the strongest correlation with the baseline tumour volume (p = 0.03). Baseline ve showed the strongest correlation with the change in tumour volume, particularly the percentage tumour volume change at 90 days after treatment (p < 0.001), and PS demonstrated a larger reduction at 90 days after treatment (p = 0.0001) when compared to Ktrans or Fp alone. Both the capillary permeability-surface area product (PS) and the extravascular extracellular fraction (ve) significantly differentiated the ‘responder’ and ‘non-responder’ tumour groups at 90 days (p < 0.05 and p < 0.001, respectively). These results highlight that this novel DCE-MRI analysis approach can be used to evaluate tumour microvascular changes during treatment and the need for future larger clinical studies investigating its role in predicting antiangiogenic therapy response.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph16091282