Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics

Social networks and official statistics have become vital sources of information in times of health emergencies. The ability to monitor and profile social sentiment is essential for understanding public perception and response in the context of public health crises, such as the one resulting from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-03, Vol.12 (6), p.911
Hauptverfasser: Velasco-López, Jorge-Eusebio, Carrasco, Ramón-Alberto, Serrano-Guerrero, Jesús, Chiclana, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Social networks and official statistics have become vital sources of information in times of health emergencies. The ability to monitor and profile social sentiment is essential for understanding public perception and response in the context of public health crises, such as the one resulting from the COVID-19 pandemic. This study will explore how social sentiment monitoring and profiling can be conducted using information from social networks and official statistics, and how this combination of data can offer a more complete picture of social dynamics in times of emergency, providing a valuable tool for understanding public perception and guiding a public health response. To this end, a three-layer architecture based on Big Data and Artificial Intelligence is presented: the first layer focuses mainly on collecting, storing, and governing the necessary data such as social media and official statistics; in the second layer, the representation models and machine learning necessary for knowledge generation are built, and in the third layer the previously generated knowledge is adapted for better understanding by crisis managers through visualization techniques among others. Based on this architecture, a KDD (Knowledge Discovery in Databases) framework is implemented using methodological tools such as sentiment analysis, fuzzy 2-tuple linguistic models and time series prediction with the Prophet model. As a practical demonstration of the proposed model, we use tweets as data source (from the social network X, formerly known as Twitter) generated during the COVID-19 pandemic lockdown period in Spain, which are processed to identify the overall sentiment using sentiment analysis techniques and fuzzy linguistic variables, and combined with official statistical indicators for prediction, visualizing the results through dashboards.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12060911