Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera
Diabetic retinopathy (DR) is a common complication of diabetes and may lead to irreversible visual loss. Efficient screening and improved treatment of both diabetes and DR have amended visual prognosis for DR. The number of patients with diabetes is increasing and telemedicine, mobile handheld devic...
Gespeichert in:
Veröffentlicht in: | Annals of medicine (Helsinki) 2024-12, Vol.56 (1), p.2352018-2352018 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetic retinopathy (DR) is a common complication of diabetes and may lead to irreversible visual loss. Efficient screening and improved treatment of both diabetes and DR have amended visual prognosis for DR. The number of patients with diabetes is increasing and telemedicine, mobile handheld devices and automated solutions may alleviate the burden for healthcare. We compared the performance of 21 artificial intelligence (AI) algorithms for referable DR screening in datasets taken by handheld Optomed Aurora fundus camera in a real-world setting.
Prospective study of 156 patients (312 eyes) attending DR screening and follow-up. Both papilla- and macula-centred 50° fundus images were taken from each eye. DR was graded by experienced ophthalmologists and 21 AI algorithms.
Most eyes, 183 out of 312 (58.7%), had no DR and mild NPDR was noted in 21 (6.7%) of the eyes. Moderate NPDR was detected in 66 (21.2%) of the eyes, severe NPDR in 1 (0.3%), and PDR in 41 (13.1%) composing a group of 34.6% of eyes with referable DR. The AI algorithms achieved a mean agreement of 79.4% for referable DR, but the results varied from 49.4% to 92.3%. The mean sensitivity for referable DR was 77.5% (95% CI 69.1-85.8) and specificity 80.6% (95% CI 72.1-89.2). The rate for images ungradable by AI varied from 0% to 28.2% (mean 1.9%). Nineteen out of 21 (90.5%) AI algorithms resulted in grading for DR at least in 98% of the images.
Fundus images captured with Optomed Aurora were suitable for DR screening. The performance of the AI algorithms varied considerably emphasizing the need for external validation of screening algorithms in real-world settings before their clinical application. |
---|---|
ISSN: | 0785-3890 1365-2060 |
DOI: | 10.1080/07853890.2024.2352018 |