Ventricular–arterial coupling: Invasive and non-invasive assessment

Abstract Interactions between the left ventricle (LV) and the arterial system, (ventricular–arterial coupling) are key determinants of cardiovascular function. Ventricular–arterial coupling is most frequently assessed in the pressure–volume plane using the ratio of effective arterial elastance ( EA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artery research 2013-03, Vol.7 (1), p.2-14
1. Verfasser: Chirinos, Julio A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Interactions between the left ventricle (LV) and the arterial system, (ventricular–arterial coupling) are key determinants of cardiovascular function. Ventricular–arterial coupling is most frequently assessed in the pressure–volume plane using the ratio of effective arterial elastance ( EA ) to LV end-systolic elastance ( EES ). EA (usually interpreted as a lumped index of arterial load) can be computed as end-systolic pressure/stroke volume, whereas EES (a load-independent measure of LV chamber systolic stiffness and contractility) is ideally assessed invasively using data from a family of pressure–volume loops obtained during an acute preload alteration. Single-beat methods have also been proposed, allowing for non-invasive estimations of EES using simple echocardiographic measurements. The EA / EES ratio is useful because it provides information regarding the operating mechanical efficiency and performance of the ventricular–arterial system. However, it should be recognized that analyses in the pressure–volume plane have several limitations and that “ventricular–arterial coupling” encompasses multiple physiologic aspects, many of which are not captured in the pressure–volume plane. Therefore, additional assessments provide important incremental physiologic information about the cardiovascular system and should be more widely used. In particular, it should be recognized that: (1) comprehensive analyses of arterial load are important because EA poorly characterizes pulsatile LV load and does not depend exclusively on arterial properties; (2) The systolic loading sequence, an important aspect of ventricular–arterial coupling, is neglected by pressure–volume analyses, and can profoundly impact LV function, remodeling and progression to heart failure. This brief review summarizes methods for the assessment of ventricular–arterial interactions, as discussed at the Artery 12 meeting (October 2012).
ISSN:1872-9312
1876-4401
1876-4401
DOI:10.1016/j.artres.2012.12.002