Metabolic Activity of Micromycetes Affecting Urban Concrete Constructions

Concrete resistance to the destructive action of microorganisms is considered as a measure of its durability and is increasingly being raised as an important issue. We focused our study on the biodeterioration of concrete specimens widely used as a building material of urban houses by micromycetes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2018, Vol.2018 (2018), p.1-9
Hauptverfasser: Okunev, Rodion, Kozlova, Olga, Stroganov, Victor, Sagadeev, Eugene, Yakovleva, Galina, Ilinskaya, Olga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concrete resistance to the destructive action of microorganisms is considered as a measure of its durability and is increasingly being raised as an important issue. We focused our study on the biodeterioration of concrete specimens widely used as a building material of urban houses by micromycetes isolated from the inner wall surface of the former military hospital in Kazan city, Tatarstan, Russia. Fungal community consists of 9 Penicillium isolates, 6 Aspergillus, 2 Trichoderma, and 1 isolate of Alternaria. First, we have identified two dominant isolates, Aspergillus fumigatus and Penicillium brevicompactum, and characterized their destructive properties according to the radial growth rate, antagonistic activity towards bacterial habitants of concrete, and production of organic acids. Then, we have demonstrated that five tested brands of high-strength concrete differ in bioreceptivity. The alterations in concrete resistances to compression and flexure after fungal attack were recorded at the trend level, mainly due to a short exposure time of concrete to fungal destructors in tests recommended by national Russian standard. Finally, using scanning electron microscopy we have shown that colonization of concrete by the dominant fungi includes their penetration into the thickness of concrete and germination in cracks. Elementary analysis revealed the decrease of calcium content on about 41% after fungal growth on the concrete in liquid phase and on 32% by superficial growth in comparison with the samples without fungal treatment.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2018/8360287