Ground State Solutions for Fractional Choquard Equations with Potential Vanishing at Infinity

In this paper, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the zero ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2019-02, Vol.7 (2), p.151
Hauptverfasser: Luo, Huxiao, Li, Shengjun, Li, Chunji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).
ISSN:2227-7390
2227-7390
DOI:10.3390/math7020151