Rapid SERS detection of antimony using a superparamagnetic FA@MIL-101(Fe) composite substrate

The pollution of antimony (Sb) and its accumulation as a persistent toxic substance (PTS) within environmental systems, leading to substantial hazards for ecosystems and public health. Therefore, developing rapid and sensitive methods for Sb detection is essential for mitigating its environmental im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental chemistry and ecotoxicology 2025, Vol.7, p.221-228
Hauptverfasser: Sun, Zhenli, Tang, Jianghong, Ji, Xunlong, Du, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pollution of antimony (Sb) and its accumulation as a persistent toxic substance (PTS) within environmental systems, leading to substantial hazards for ecosystems and public health. Therefore, developing rapid and sensitive methods for Sb detection is essential for mitigating its environmental impact. SERS presents a promising approach for detecting Sb, attributed to its high sensitivity and ability to capture distinct molecular fingerprints. However, traditional SERS substrates have struggled with effective detection because of weak interactions between Sb and traditional SERS substrate. To address this issue, a FA@MIL-101(Fe) composite combining Fe₃O₄’s magnetic properties and MIL-101(Fe)’s strong adsorption was synthesized, significantly enhancing Sb(III) detection. This substrate showed high sensitivity and selectivity, achieving a detection limit below 4 × 10−8 M, while effectively minimizing interference from other ions. Additionally, the substrate maintained long-term stability, consistently performing over 21 days. The FA@MIL-101(Fe) composite substrate offers a versatile and efficient platform for Sb(III) detection, providing broad potential for monitoring PTS in environmental applications. •Introduces a novel magnetic FA@MIL-101(Fe) substrate for SERS detection of Sb(III)with high selectivity.•Achieves high sensitivity with a detection limit of 4 × 10−8 M for Sb(III).•Ensures stable and reproducible substrate for long-term environmental monitoring.
ISSN:2590-1826
2590-1826
DOI:10.1016/j.enceco.2024.12.007