A novel technology to integrate imaging and clinical markers for non-invasive diagnosis of lung cancer

This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.4597-4597, Article 4597
Hauptverfasser: Shaffie, Ahmed, Soliman, Ahmed, Fu, Xiao-An, Nantz, Michael, Giridharan, Guruprasad, van Berkel, Victor, Khalifeh, Hadil Abu, Ghazal, Mohammed, Elmaghraby, Adel, El-baz, Ayman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung cancer that integrates imaging data from a single computed tomography scan and breath bio-markers obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small sample size and validate the methodology for individual markers, retrospective CT scans from 467 patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in classifying pulmonary nodules.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83907-5