Variable-Length Resolvability for General Sources and Channels

We introduce the problem of variable-length (VL) source resolvability, in which a given target probability distribution is approximated by encoding a VL uniform random number, and the asymptotically minimum average length rate of the uniform random number, called the VL resolvability, is investigate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-10, Vol.25 (10), p.1466
Hauptverfasser: Yagi, Hideki, Han, Te Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the problem of variable-length (VL) source resolvability, in which a given target probability distribution is approximated by encoding a VL uniform random number, and the asymptotically minimum average length rate of the uniform random number, called the VL resolvability, is investigated. We first analyze the VL resolvability with the variational distance as an approximation measure. Next, we investigate the case under the divergence as an approximation measure. When the asymptotically exact approximation is required, it is shown that the resolvability under two kinds of approximation measures coincides. We then extend the analysis to the case of channel resolvability, where the target distribution is the output distribution via a general channel due to a fixed general source as an input. The obtained characterization of channel resolvability is fully general in the sense that, when the channel is just an identity mapping, it reduces to general formulas for source resolvability. We also analyze the second-order VL resolvability.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25101466