LQG/LTR control of input-delayed discrete-time systems
A simple robust cheap LQG control is considered for discrete-time systems with constant input delay. It is well known that the full loop transfer recovery (LTR) effect measured by error function ∆(z) can only be obtained for minimum-phase (MPH) systems without time-delay. Explicit analytical express...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Polish Academy of Sciences. Technical sciences 2019-01, Vol.67 (6), p.1049-1058 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple robust cheap LQG control is considered for discrete-time systems with constant input delay. It is well known that the full loop transfer recovery (LTR) effect measured by error function ∆(z) can only be obtained for minimum-phase (MPH) systems without time-delay. Explicit analytical expressions for ∆(z) versus delay d are derived for both MPH and NMPH (nonminimum-phase) systems. Obviously, introducing delay deteriorates the LTR effect. In this context the ARMAX system as a simple example of noise-correlated system is examined. The robustness of LQG/LTR control is analyzed and compared with state prediction control whose robust stability is formulated via LMI. Also, the robustness with respect to uncertain time-delay is considered including the control systems which are unstable in open-loop. An analysis of LQG/LTR problem for noise-correlated systems, particularly for ARMAX system, is included and the case of proper systems is analyzed. Computer simulations of second-order systems with constant time-delay are given to illustrate the performance and recovery error for considered systems and controllers. |
---|---|
ISSN: | 0239-7528 2300-1917 |
DOI: | 10.24425/bpasts.2019.130895 |