Impact of Prolonged Blood Incubation and Extended Serum Storage at Room Temperature on the Human Serum Metabolome
Metabolomics is a powerful technology with broad applications in life science that, like other -omics approaches, requires high-quality samples to achieve reliable results and ensure reproducibility. Therefore, along with quality assurance, methods to assess sample quality regarding pre-analytical c...
Gespeichert in:
Veröffentlicht in: | Metabolites 2018-01, Vol.8 (1), p.6 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metabolomics is a powerful technology with broad applications in life science that, like other -omics approaches, requires high-quality samples to achieve reliable results and ensure reproducibility. Therefore, along with quality assurance, methods to assess sample quality regarding pre-analytical confounders are urgently needed. In this study, we analyzed the response of the human serum metabolome to pre-analytical variations comprising prolonged blood incubation and extended serum storage at room temperature by using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) -based metabolomics. We found that the prolonged incubation of blood results in a statistically significant 20% increase and 4% decrease of 225 tested serum metabolites. Extended serum storage affected 21% of the analyzed metabolites (14% increased, 7% decreased). Amino acids and nucleobases showed the highest percentage of changed metabolites in both confounding conditions, whereas lipids were remarkably stable. Interestingly, the amounts of taurine and
-phosphoethanolamine, which have both been discussed as biomarkers for various diseases, were 1.8- and 2.9-fold increased after 6 h of blood incubation. Since we found that both are more stable in ethylenediaminetetraacetic acid (EDTA) blood, EDTA plasma should be the preferred metabolomics matrix. |
---|---|
ISSN: | 2218-1989 2218-1989 |
DOI: | 10.3390/metabo8010006 |