A polishing the harmful effects of Broad Bean Mottle Virus infecting broad bean plants by enhancing the immunity using different potassium concentrations

Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production reductions. The lack of adequate and effective control methods involves implementing novel BBMV control strategies. Herein, we demonstrate the effect of different potassium concentrations (20, 40, and 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Notulae botanicae Horti agrobotanici Cluj-Napoca 2022-01, Vol.50 (1), p.12654
Hauptverfasser: SOFY, Mahmoud R., MANCY, Ahmed G., ALNAGGAR, Abd El‐Aleem M., REFAEY, Ehab E., MOHAMED, Heba I., ELNOSARY, Mohamed E., SOFY, Ahmed R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production reductions. The lack of adequate and effective control methods involves implementing novel BBMV control strategies. Herein, we demonstrate the effect of different potassium concentrations (20, 40, and 60 mM) against BBMV in broad bean plants. Potassium could control BBMV infection in broad bean by inhibiting the virus. In addition, infection with BBMV caused a significant decrease in morphological criteria, SPDA, photosynthetic characteristics, phytohormones, and mineral content in broad bean leaves compared to control plants. The levels of reactive oxygen species (ROS) (hydrogen peroxide, hydroxyl radical, and oxygen anion) and ROS scavenging enzymes (catalase, superoxide dismutase, peroxidase, phenylaniline ammonia-lyase, chitinase, and 1,3 - glucanase) increased significantly in plants inoculated with BBMV alone or in the presence of K+. In addition, proline and phenolic compounds increased significantly after being infected with BBMV. In conclusion, treatment with a high potassium concentration (60 mM) alleviates the adverse effect of BBMV on broad bean plants by boosting secondary metabolites, phytohormones, and enzymatic antioxidants.
ISSN:0255-965X
1842-4309
1842-4309
DOI:10.15835/nbha50112654