TMT-based proteomics analysis of the blood enriching mechanism of the total Tannins of Gei Herba in mice

Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-06, Vol.10 (12), p.e33212, Article e33212
Hauptverfasser: Mu, Wenbi, Duan, Cancan, Ao, Jingwen, Du, Fanpan, Zhang, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underlying the therapeutic effects of the total Tannins of Lanbuzheng (LBZT) against anemia in mice. Anemia mice was induced by cyclophosphamide, the effect of LBZT against anemia was determined by analyzing peripheral blood and evaluating organs indexes. Tandem mass tag (TMT)-based quantitative proteomics technology coupled with bioinformatics analysis was then used to identify differentially expressed proteins (DEPs) in spleen. Compared to the model, number of RBCs, PLTs and WBCs, HCT ratio and HGB content were increased, the indexes of thymus, spleen and liver were also increased, after LBZT intervention. A total of 377 DEPs were identified in LBZT group, of which 206 DEPs were significantly up-regulated and 171 DEPs were significantly down-regulated. Bioinformatics analysis showed that hematopoietic function has been restored by activating the complement and coagulation cascade signaling pathways. Results suggest that LBZT exerts it therapeutic effects against anemia by regulating complement and coagulation cascade signaling pathways and provides scientific basis for further mechanistic studies for LBZT. •LBZT effectively improved anemia in cyclophosphamide (CYC)-induced mice.•Mechanisms of protection involve upregulating of peripheral blood and organs indexes.•Activation of complement and coagulation cascade signaling pathways underlies the protection afforded by LBZT.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e33212