Particle separator with vortex claw: an efficient and new technology
Despite facing many challenges, the exploration of using natural forces and mechanisms besides gravity to enhance particle settling has never ceased. A novel particle separator design, which utilizes multiple vortexes to enhance particle settling, was proposed in this study. The basic principle is u...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2024-03, Vol.89 (6), p.1441-1453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite facing many challenges, the exploration of using natural forces and mechanisms besides gravity to enhance particle settling has never ceased. A novel particle separator design, which utilizes multiple vortexes to enhance particle settling, was proposed in this study. The basic principle is using the fluid's energy to generate small swirling currents in a specially designed vortex claw generator. These currents bring suspended particles from the rapid and turbulent inflow to relatively quiet water regions, separating them from the main flows and reducing their travel distance to the wall. To verify the new separator design's performance, comparison studies were carried out in the laboratory using physical models. The results showed that the new design had much higher particle capture rates for the same inflow rates and tested particle sizes. Most importantly, it was able to effectively remove small particles, and particle capture rates were much less affected by fluctuations in inflow rates. Since most existing particle separators failed to perform well under large inflow rates, these characteristics make the new design stand out from other separators. Due to its special structure, its treatment capacity can also be easily increased without changing its horizontal separator size. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2024.072 |