Cyclic Loading Test of Rectangular Tube-Type Buckling-Restrained Braces with Enhancements to Prevent Local Bulging Failure

In this study, innovative enhancements of rectangular tube-type buckling-restrained braces are proposed to prevent bulging failure on the surface of the outer restrainer and validated experimentally. First, an inner restrainer composed of a bent plate, which increases the stiffness and strength to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-10, Vol.13 (19), p.10926
Hauptverfasser: Kwak, Byeong-Hun, Park, Ji-Hun, Ahn, Sook-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, innovative enhancements of rectangular tube-type buckling-restrained braces are proposed to prevent bulging failure on the surface of the outer restrainer and validated experimentally. First, an inner restrainer composed of a bent plate, which increases the stiffness and strength to resist outward force exerted by the steel core subjected to higher-mode buckling, is installed inside the outer restrainer. Second, the unbonding material surrounding the steel core is partially thickened to create additional space to prevent the outward force from being transferred directly along the centerline of the cross-section. Buckling-restrained braces with and without the enhancements are tested via cycling loading to validate the efficiency of the proposed enhancements. Improvements in strength and deformation capacity are evaluated quantitatively. The proposed enhancements increased the compressive strength and cumulative inelastic deformation capacity of the buckling-restrained braces. However, the increased outward force owing to the compression-hardening phenomenon led to bulging failure, where the added inner restrainer terminated. An analytical formula is proposed to estimate the outward-force-resisting capacity of the inner restrainer, which predicted bulging failure adequately.
ISSN:2076-3417
2076-3417
DOI:10.3390/app131910926