Numerical Investigation of the Three-Dimensional Flow around a Surface-Mounted Rib and the Onset of Unsteadiness
The incompressible laminar isothermal flow of a Newtonian fluid at steady state around a surface-mounted rib is studied in a three-dimensional (3D) numerical experiment. The dimensionless Navier–Stokes equations are solved numerically using the Galerkin finite element method for Reynolds numbers 1 t...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2023-06, Vol.11 (12), p.2601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incompressible laminar isothermal flow of a Newtonian fluid at steady state around a surface-mounted rib is studied in a three-dimensional (3D) numerical experiment. The dimensionless Navier–Stokes equations are solved numerically using the Galerkin finite element method for Reynolds numbers 1 to 800. The expansion ratio of the problem is 1:9.6, while the aspect ratio is 1:20. The transition from the steady to the unsteady state and the identification of the critical Reynolds number are investigated in this paper. Numerical results of the skin-friction lines at the bottom and streamlines throughout the computational field are presented. A comparison between the 2D and 3D flow is made to show the effect of the walls on the flow, which reaches the plane of symmetry and affects the flow there; hence, also affecting the stability of the flow. It is concluded that the flow is three-dimensional even for a Reynolds number equal to 10. The critical Reynolds number is 600, and the steady-state equations can be used for any calculations up to this value. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math11122601 |