Improving deep neural network generalization and robustness to background bias via layer-wise relevance propagation optimization

Features in images’ backgrounds can spuriously correlate with the images’ classes, representing background bias. They can influence the classifier’s decisions, causing shortcut learning (Clever Hans effect). The phenomenon generates deep neural networks (DNNs) that perform well on standard evaluatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-01, Vol.15 (1), p.291-291, Article 291
Hauptverfasser: Bassi, Pedro R. A. S., Dertkigil, Sergio S. J., Cavalli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Features in images’ backgrounds can spuriously correlate with the images’ classes, representing background bias. They can influence the classifier’s decisions, causing shortcut learning (Clever Hans effect). The phenomenon generates deep neural networks (DNNs) that perform well on standard evaluation datasets but generalize poorly to real-world data. Layer-wise Relevance Propagation (LRP) explains DNNs’ decisions. Here, we show that the optimization of LRP heatmaps can minimize the background bias influence on deep classifiers, hindering shortcut learning. By not increasing run-time computational cost, the approach is light and fast. Furthermore, it applies to virtually any classification architecture. After injecting synthetic bias in images’ backgrounds, we compared our approach (dubbed ISNet) to eight state-of-the-art DNNs, quantitatively demonstrating its superior robustness to background bias. Mixed datasets are common for COVID-19 and tuberculosis classification with chest X-rays, fostering background bias. By focusing on the lungs, the ISNet reduced shortcut learning. Thus, its generalization performance on external (out-of-distribution) test databases significantly surpassed all implemented benchmark models. Image background features can undesirably affect deep networks’ decisions. Here, the authors show that the optimization of Layer-wise Relevance Propagation explanation heatmaps can hinder such influence, improving out-of-distribution generalization.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-44371-z