The emotion prediction of college students with attention LSTM during the COVID19 epidemic

During the COVID19 pandemic, there is a pronounced collective mental health issue among college students. Forecasting the trend of emotional changes in on-campus students is crucial to effectively address this issue. This study proposes an Attention-LSTM neural network model that performs deep learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-12, Vol.13 (1), p.22825-22825, Article 22825
Hauptverfasser: Wu, Mengwei, Lin, Shaodan, Xiao, Chenhan, Xiao, Xiulin, Xu, Siwei, Yu, Shuhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the COVID19 pandemic, there is a pronounced collective mental health issue among college students. Forecasting the trend of emotional changes in on-campus students is crucial to effectively address this issue. This study proposes an Attention-LSTM neural network model that performs deep learning on key input sequence information, so as to predict the distribution of emotional states in college students. By testing 60 consecutive days of emotional data, the model successfully predicts students' emotional distribution, triggers and resolution strategies, with an accuracy rate of no less than 99%. Compared with models such as ARIMA, SARIMA and VAR, this model shows significant advantages in accuracy, operational efficiency, and data collection requirements. The integration of deep learning technology with student management in this study offers a novel approach to address emotional issues among students under exceptional circumstances.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-50322-x