Purinergic signaling mediates neuroglial interactions to modulate sighs

Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-08, Vol.14 (1), p.5300-14, Article 5300
Hauptverfasser: Severs, Liza J., Bush, Nicholas E., Quina, Lely A., Hidalgo-Andrade, Skyler, Burgraff, Nicholas J., Dashevskiy, Tatiana, Shih, Andy Y., Baertsch, Nathan A., Ramirez, Jan-Marino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated. Sighs are augmented breaths necessary to maintain normal breathing. Here, the authors show that sighs are generated within the preBötzinger complex by emergent network properties that involve neuroglial interactions mediated by purinergic signaling as well as intrinsic and extrinsic modulatory inputs.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40812-x