Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order
The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order q ∈ (1, 2) considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green’s function corre...
Gespeichert in:
Veröffentlicht in: | Izvestiâ Irkutskogo gosudarstvennogo universiteta. Seriâ "Matematika" (Online) 2020-01, Vol.34 (1), p.51-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order q ∈ (1, 2) considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green’s function corresponding to the problem employing the theory of fractional analysis and properties of the Mittag-Leffler function . Then, we reduce the original problem to the problem on existence of fixed points of a resolving integral operator. To prove the existence of fixed points of this operator we investigate its properties based on topological degree theory for condensing mappings and use a generalized B.N. Sadovskii-type fixed point theorem. |
---|---|
ISSN: | 1997-7670 2541-8785 |
DOI: | 10.26516/1997-7670.2020.34.51 |