Antiperiodic Boundary Value Problem for a Semilinear Differential Equation of Fractional Order

The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order q ∈ (1, 2) considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green’s function corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiâ Irkutskogo gosudarstvennogo universiteta. Seriâ "Matematika" (Online) 2020-01, Vol.34 (1), p.51-66
1. Verfasser: Petrosyan, G. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper is concerned with an antiperiodic boundary value problem for a semilinear differential equation with Caputo fractional derivative of order q ∈ (1, 2) considered in a separable Banach space. To prove the existence of a solution to our problem, we construct the Green’s function corresponding to the problem employing the theory of fractional analysis and properties of the Mittag-Leffler function . Then, we reduce the original problem to the problem on existence of fixed points of a resolving integral operator. To prove the existence of fixed points of this operator we investigate its properties based on topological degree theory for condensing mappings and use a generalized B.N. Sadovskii-type fixed point theorem.
ISSN:1997-7670
2541-8785
DOI:10.26516/1997-7670.2020.34.51