Analysis of Lithium-ion Battery Micro-overcharge Cycle Damage Mechanism Based on Electrochemical Impedance Spectroscopy
Electrochemical impedance spectroscopy (EIS) was used to study the micro-overcharge cycle damage mechanism of Lithium-ion batteries (LIBs). Micro-overcharge cycle experiments of LIBs were carried out, and the capacity fading of LIBs under different charging cut-off voltages were analyzed. It was fou...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2021-01, Vol.261, p.2076 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical impedance spectroscopy (EIS) was used to study the micro-overcharge cycle damage mechanism of Lithium-ion batteries (LIBs). Micro-overcharge cycle experiments of LIBs were carried out, and the capacity fading of LIBs under different charging cut-off voltages were analyzed. It was found that the capacity fading rate of LIBs increased with the rising of overcharge cut-off voltages and the increasing of cycle numbers. The EIS results show that the main damage pattern of LIBs during micro-overcharge cycle is the active lithium loss when the cut-off voltage is between 4.3 V and 4.4 V. Lithium loss accounts for more than 80% damage proportion when LIBs cycling for more than 20 cycles. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202126102076 |