DRAGen – A deep learning supported RVE generator framework for complex microstructure models

In this study an improved version of the Discrete RVE Automation and Generation Framework, also called DRAGen, is presented. The Framework incorporates a generator for Representative Volume Elements (RVEs). Several complex microstructure features, extracted from real microstructures, have been added...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-08, Vol.9 (8), p.e19003-e19003, Article e19003
Hauptverfasser: Henrich, Manuel, Fehlemann, Niklas, Bexter, Felix, Neite, Maximilian, Kong, Linghao, Shen, Fuhui, Könemann, Markus, Dölz, Michael, Münstermann, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study an improved version of the Discrete RVE Automation and Generation Framework, also called DRAGen, is presented. The Framework incorporates a generator for Representative Volume Elements (RVEs). Several complex microstructure features, extracted from real microstructures, have been added to the generator, to enable it to generate RVEs with realistic microstructures. DRAGen is now capable of reading trained neural networks as well as .csv-files as input data for the microstructure generation. Furthermore, features such as pores and inclusions, martensite bands, hierarchical substructures, and crystallographic textures can be reconstructed in the RVEs. Besides the features, the functionality for different solvers was introduced. Therefore, the code was extended by modules for the generation of Finite Element (FE) and spectral solver input files. DRAGen now has the ability to create models for three powerful multiphysics frameworks used in the community: DAMASK, Abaqus and MOOSE. The evaluation of the features, as well as the simulations performed on sample models, show that the new version of DRAGen is a very powerful tool with flexible applicability for scientists in the ICME community. Also, due to the modular architecture of the project, the code can easily be expanded with features of interest. Therefore, it delivers a variety of functions and possible outputs, which offers researchers a broad spectrum of microstructures that can be used in microstructure studies or microstructure design developments. •Introduction of refactored RVE generator.•Presentation of optically accurate modeling of complex microstructure features.•Quantification of complex microstructure features and validation of models.•Reconstruction of pores, inclusions, martensitic bands, pronounced textures and hierarchical substructures.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e19003