Polymer Dispersed Liquid Crystal Imprinted by Microlens Array for Enhanced Outcoupling Efficiency of Organic Light Emitting Diode

In this paper, we demonstrate the use of polymer dispersed liquid crystal (PDLC) imprinted with a microlens array (MLA) via solution process to improve the outcoupling efficiency of organic light emitting diodes (OLEDs). The PDLC, well known for its scattering effect, is an excellent technology for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-12, Vol.29 (1), p.73
Hauptverfasser: Lim, Seongmin, Ahn, Hyeon-Sik, Jang, Eun-Jeong, Boo, So-Young, Gasonoo, Akpeko, Gwag, Jin-Seog, Lee, Jae-Hyun, Choi, Yoonseuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we demonstrate the use of polymer dispersed liquid crystal (PDLC) imprinted with a microlens array (MLA) via solution process to improve the outcoupling efficiency of organic light emitting diodes (OLEDs). The PDLC, well known for its scattering effect, is an excellent technology for improving the outcoupling efficiency of OLEDs. Additionally, we introduce a simple spin-coating process to fabricate PDLC which is adaptable for future solution-processed OLEDs. The MLA-imprinted PDLC applied OLED shows an enhancement factor of 1.22 in outcoupling efficiency which is a 37.5% increase compared to the existing PDLC techniques without changing the electrical properties of the OLED. Through this approach, we can expect the roll-to-roll based extremely flexible OLED, and with further research on pattering PDLC by various templates, higher outcoupling efficiency is achievable through a simple UV irradiation process.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29010073