Finding signatures of the nuclear symmetry energy in heavy-ion collisions with deep learning

A deep convolutional neural network (CNN) is developed to study symmetry energy (Esym(ρ)) effects by learning the mapping between the symmetry energy and the two-dimensional (transverse momentum and rapidity) distributions of protons and neutrons in heavy-ion collisions. Supervised training is perfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2021-11, Vol.822, p.136669, Article 136669
Hauptverfasser: Wang, Yongjia, Li, Fupeng, Li, Qingfeng, Lü, Hongliang, Zhou, Kai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A deep convolutional neural network (CNN) is developed to study symmetry energy (Esym(ρ)) effects by learning the mapping between the symmetry energy and the two-dimensional (transverse momentum and rapidity) distributions of protons and neutrons in heavy-ion collisions. Supervised training is performed with labeled data-set from the ultrarelativistic quantum molecular dynamics (UrQMD) model simulation. It is found that, by using proton spectra on event-by-event basis as input, the accuracy for classifying the soft and stiff Esym(ρ) is about 60% due to large event-by-event fluctuations, while by setting event-summed proton spectra as input, the classification accuracy increases to 98%. The accuracies for 5-label (5 different Esym(ρ)) classification task are about 58% and 72% by using proton and neutron spectra, respectively. For the regression task, the mean absolute errors (MAE) which measure the average magnitude of the absolute differences between the predicted and actual L (the slope parameter of Esym(ρ)) are about 20.4 and 14.8 MeV by using proton and neutron spectra, respectively. Fingerprints of the density-dependent nuclear symmetry energy on the transverse momentum and rapidity distributions of protons and neutrons can be identified by convolutional neural network algorithm.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2021.136669