Variational Approach for the Variable-Order Fractional Magnetic Schrödinger Equation with Variable Growth and Steep Potential in ℝN
In this paper, we show the existence of solutions for an indefinite fractional Schrödinger equation driven by the variable-order fractional magnetic Laplace operator involving variable exponents and steep potential. By using the decomposition of the Nehari manifold and variational method, we obtain...
Gespeichert in:
Veröffentlicht in: | Advances in mathematical physics 2020, Vol.2020 (2020), p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show the existence of solutions for an indefinite fractional Schrödinger equation driven by the variable-order fractional magnetic Laplace operator involving variable exponents and steep potential. By using the decomposition of the Nehari manifold and variational method, we obtain the existence results of nontrivial solutions to the equation under suitable conditions. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2020/1320635 |