Variational Approach for the Variable-Order Fractional Magnetic Schrödinger Equation with Variable Growth and Steep Potential in ℝN

In this paper, we show the existence of solutions for an indefinite fractional Schrödinger equation driven by the variable-order fractional magnetic Laplace operator involving variable exponents and steep potential. By using the decomposition of the Nehari manifold and variational method, we obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematical physics 2020, Vol.2020 (2020), p.1-15
Hauptverfasser: Wang, Yanning, Tian, Liping, Zhou, Bianxiang, Zhou, Jianwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show the existence of solutions for an indefinite fractional Schrödinger equation driven by the variable-order fractional magnetic Laplace operator involving variable exponents and steep potential. By using the decomposition of the Nehari manifold and variational method, we obtain the existence results of nontrivial solutions to the equation under suitable conditions.
ISSN:1687-9120
1687-9139
DOI:10.1155/2020/1320635