OMG U got flu? Analysis of shared health messages for bio-surveillance

Micro-blogging services such as Twitter offer the potential to crowdsource epidemics in real-time. However, Twitter posts ('tweets') are often ambiguous and reactive to media trends. In order to ground user messages in epidemic response we focused on tracking reports of self-protective beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical semantics 2011-10, Vol.2 Suppl 5 (Suppl 5), p.S9-S9
Hauptverfasser: Collier, Nigel, Son, Nguyen Truong, Nguyen, Ngoc Mai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-blogging services such as Twitter offer the potential to crowdsource epidemics in real-time. However, Twitter posts ('tweets') are often ambiguous and reactive to media trends. In order to ground user messages in epidemic response we focused on tracking reports of self-protective behaviour such as avoiding public gatherings or increased sanitation as the basis for further risk analysis. We created guidelines for tagging self protective behaviour based on Jones and Salathé (2009)'s behaviour response survey. Applying the guidelines to a corpus of 5283 Twitter messages related to influenza like illness showed a high level of inter-annotator agreement (kappa 0.86). We employed supervised learning using unigrams, bigrams and regular expressions as features with two supervised classifiers (SVM and Naive Bayes) to classify tweets into 4 self-reported protective behaviour categories plus a self-reported diagnosis. In addition to classification performance we report moderately strong Spearman's Rho correlation by comparing classifier output against WHO/NREVSS laboratory data for A(H1N1) in the USA during the 2009-2010 influenza season. The study adds to evidence supporting a high degree of correlation between pre-diagnostic social media signals and diagnostic influenza case data, pointing the way towards low cost sensor networks. We believe that the signals we have modelled may be applicable to a wide range of diseases.
ISSN:2041-1480
2041-1480
DOI:10.1186/2041-1480-2-S5-S9