An Improved Autonomous Current-Fed Push-Pull Parallel-Resonant Inverter for Inductive Power Transfer System

In the inductive power transfer (IPT) system, it is recommended to drive the resonant inverter in zero-voltage switching (ZVS) or zero-current switching (ZCS) operation to reduce switching losses, especially in dynamic applications with variable couplings. This paper proposes an improved autonomous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-10, Vol.11 (10), p.2653
Hauptverfasser: Yu, Anning, Zeng, Xiaoping, Xiong, Dong, Tian, Mi, Li, Junbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the inductive power transfer (IPT) system, it is recommended to drive the resonant inverter in zero-voltage switching (ZVS) or zero-current switching (ZCS) operation to reduce switching losses, especially in dynamic applications with variable couplings. This paper proposes an improved autonomous current-fed push-pull parallel-resonant inverter, which not only realizes the ZVS operation by tracking the zero phase angle (ZPA) frequency, but also improves the output power and overall efficiency in a wide range by reducing gate losses and switching losses. The ZPA frequencies characteristic of the parallel-parallel resonant circuit in both bifurcation and bifurcation-free regions is derived and verified by theory and experiments, and the comparative experimental results demonstrate that the improved inverter can significantly increase the output power from 7.68 W to 8.74 W and has an overall efficiency ranging from 63.5% to 72.5% compared with the traditional inverter at a 2 cm coil distance. Furthermore, with a 2-fold input voltage (24 V), the improved inverter can achieve an approximate 4-fold output power of 38.9 W and overall efficiency of 83.6% at a 2 cm coil distance.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11102653