Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry
Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total mark...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2016-06, Vol.21 (7), p.834-834 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scent-marking is the most effective method of communication in the presence or absence of a signaler. These complex mixtures result in a multifaceted interaction triggered by the sense of smell. The objective was to identify volatile organic compound (VOC) composition and odors emitted by total marking fluid (MF) associated with Siberian tigers (Panthera tigris altaica). Siberian tiger, an endangered species, was chosen because its MF had never been analyzed. Solid phase microextraction (SPME) for headspace volatile collection combined with multidimensional gas chromatography-mass spectrometry-olfactometry for simultaneous chemical and sensory analyses were used. Thirty-two VOCs emitted from MF were identified. 2-acetyl-1-pyrroline, the sole previously identified compound responsible for the "characteristic" odor of P. tigris MF, was identified along with two additional compounds confirmed with standards (urea, furfural) and four tentatively identified compounds (3-methylbutanamine, (R)-3-methylcyclopentanone, propanedioic acid, and 3-hydroxybutanal) as being responsible for the characteristic aroma of Siberian tiger MF. Simultaneous chemical and sensory analyses improved characterization of scent-markings and identified compounds not previously reported in MF of other tiger species. This research will assist animal ecologists, behaviorists, and zookeepers in understanding how scents from specific MF compounds impact tiger and wildlife communication and improve management practices related to animal behavior. Simultaneous chemical and sensory analyses is applicable to unlocking scent-marking information for other species. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules21070834 |