BER Aided Energy and Spectral Efficiency Estimation in a Heterogeneous Network

In this work, we adopt the analysis of a heterogeneous cellular network by means of stochastic geometry, to estimate energy and spectral network efficiency. More specifically, it has been the widely spread experience that practical field assessment of the Signal-to-Noise and Interference Ratio (SINR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation 2022-09, Vol.10 (9), p.162
Hauptverfasser: Musovic, Jasmin, Lipovac, Adriana, Lipovac, Vlatko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we adopt the analysis of a heterogeneous cellular network by means of stochastic geometry, to estimate energy and spectral network efficiency. More specifically, it has been the widely spread experience that practical field assessment of the Signal-to-Noise and Interference Ratio (SINR), being the key physical-layer performance indicator, involves quite sophisticated test instrumentation that is not always available outside the lab environment. So, in this regard, we present here a simpler test model coming out of the much easier-to-measure Bit Error Rate (BER), as the latter can deteriorate due to various impairments regarded here as equivalent with additive white Gaussian noise (AWGN) abstracting (in terms of equal BER degradation) any actual non-AWGN impairment. We validated the derived analytical model for heterogeneous two-tier networks by means of an ns3 simulator, as it provided the test results that fit well to the analytically estimated corresponding ones, both indicating that small cells enable better energy and spectral efficiencies than the larger-cell networks.
ISSN:2079-3197
2079-3197
DOI:10.3390/computation10090162