Efficient Decision Trees for Multi–Class Support Vector Machines Using Entropy and Generalization Error Estimation

We propose new methods for support vector machines using a tree architecture for multi-class classification. In each node of the tree, we select an appropriate binary classifier, using entropy and generalization error estimation, then group the examples into positive and negative classes based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied mathematics and computer science 2018-12, Vol.28 (4), p.705-717
Hauptverfasser: Kantavat, Pittipol, Kijsirikul, Boonserm, Songsiri, Patoomsiri, Fukui, Ken-Ichi, Numao, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose new methods for support vector machines using a tree architecture for multi-class classification. In each node of the tree, we select an appropriate binary classifier, using entropy and generalization error estimation, then group the examples into positive and negative classes based on the selected classifier, and train a new classifier for use in the classification phase. The proposed methods can work in time complexity between O(log N) and O(N), where N is the number of classes. We compare the performance of our methods with traditional techniques on the UCI machine learning repository using 10-fold cross-validation. The experimental results show that the methods are very useful for problems that need fast classification time or those with a large number of classes, since the proposed methods run much faster than the traditional techniques but still provide comparable accuracy.
ISSN:2083-8492
1641-876X
2083-8492
DOI:10.2478/amcs-2018-0054