Complementary geophysical methods for monitoring groundwater pressure and saturation
Monitoring groundwater levels and soil moisture content (SMC) is crucial for managing water resources and assessing risks, but can be challenging, especially over large acreages. Recent advances in geophysical methods provide new opportunities for accurate groundwater assessment. Seismic wave speed...
Gespeichert in:
Veröffentlicht in: | Netherlands Journal of Geosciences 2024-12, Vol.103, Article e26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monitoring groundwater levels and soil moisture content (SMC) is crucial for managing water resources and assessing risks, but can be challenging, especially over large acreages. Recent advances in geophysical methods provide new opportunities for accurate groundwater assessment. Seismic wave speed data, sensitive to changes in pore water pressure, can be used in a passive monitoring approach, while electrical conductivity data can be used for monitoring SMC. Combining seismic and electromagnetic induction (EMI)-based monitoring techniques enhances our understanding of groundwater dynamics. Seismic methods enable wide spatial coverage with moderate depth resolution, whereas EMI offers high-resolution, rapid data acquisition, particularly effective for shallow subsurface monitoring. Integrating these approaches can leverage the strengths of each, yielding comprehensive, high-resolution insights into dynamic subsurface hydrological processes. Integrating these approaches allows for improved groundwater monitoring, aiding in better understanding and managing droughts in regions like the Netherlands. |
---|---|
ISSN: | 0016-7746 1573-9708 |
DOI: | 10.1017/njg.2024.23 |