Toward the Trajectory Predictor for Automatic Train Operation System Using CNN–LSTM Network

The accurate trajectory of the train ahead with more dynamic behaviour, such as train position, speed, acceleration, etc., is the critical issue of virtual coupling for future railways, which can drastically reduce their headways and increase line capacity. This paper presents an integrated convolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2022-09, Vol.11 (9), p.247
Hauptverfasser: He, Yijuan, Lv, Jidong, Liu, Hongjie, Tang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate trajectory of the train ahead with more dynamic behaviour, such as train position, speed, acceleration, etc., is the critical issue of virtual coupling for future railways, which can drastically reduce their headways and increase line capacity. This paper presents an integrated convolutional neural network (CNN) and long short-term memory (LSTM) hybrid model for the task of trajectory prediction. A CNN–LSTM hybrid algorithm has been proposed. The model employs CNN and LSTM to extract the spatial dimension feature of the trajectory and the long-term dependencies of train trajectory data, respectively. The proposed CNN–LSTM model has superiority in achieving collaborative data mining on spatiotemporal measurement data to simultaneously learn spatial and temporal features from phasor measurement unit data. Therefore, the high-precision prediction of the train trajectory prediction is achieved based on the sufficient fusion of the above features. We use real automatic train operation (ATO) collected data for experiments and compare the proposed method with recurrent neural networks (RNN), recurrent neural networks (GRU), LSTM, and stateful-LSTM models on the same data sets. Experimental results show that the prediction performance of long-term trajectories is satisfyingly accurate. The root mean square error (RMSE) error can be reduced to less than 0.21 m, and the hit rate achieves 93% when the time horizon increases to 4S, respectively.
ISSN:2076-0825
2076-0825
DOI:10.3390/act11090247