Depth profiles of production yields of natPb(p, xn)206,205,204,203,202 Bi reactions using 100-MeV proton beam

In this study, results of the experimental study on the depth profiles of production yields of 206,205,204,203,202Bi radio-nuclei in the natural Pb target irradiated by a 100-MeV proton beam are presented. Irradiation was performed at proton linac facility (KOMAC) in Korea. The target, irradiated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2017-01, Vol.153, p.01017
Hauptverfasser: Oranj Leila Mokhtari, Jung Nam-Suk, Oh Joo-Hee, Lee Arim, Kim Dong-Hyun, Bae Oryun, Lee Hee-Seock
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, results of the experimental study on the depth profiles of production yields of 206,205,204,203,202Bi radio-nuclei in the natural Pb target irradiated by a 100-MeV proton beam are presented. Irradiation was performed at proton linac facility (KOMAC) in Korea. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of natural Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by activation analysis method using 27Al(p, 3p1n)24Na, 197Au(p, p1n)196Au, and 197Au(p, p3n)194Au monitor reactions and also using dosimetry method by a Gafchromic film. The production yields of produced Bi radio-nuclei in the natural Pb foils and monitor reactions were measured by gamma-ray spectroscopy. Monte Carlo simulations were performed by FLUKA, PHITS, and MCNPX codes and compared with the measurements in order to verify validity of physical models and nuclear data libraries in the Monte Carlo codes. A fairly good agreement was observed between the present experimental data and the simulations by FLUKA, PHITS, and MCNPX. However, physical models and the nuclear data relevant to the end of range of protons in the codes need to be improved.
ISSN:2100-014X
DOI:10.1051/epjconf/201715301017