Fine-grained point cloud classification based on hierarchical feature enhancement. Journal of Zhejiang University (Science Edition),2025,52(1):70⁃80(基于层次特征增强的细粒度点云分类)
Aiming at the problem of insufficient local feature extraction of general point cloud classification methods in fine-grained classification tasks, we propose a point cloud-oriented 3D model classification framework, HFE-Net. The Veronese mapping-based point feature enhancement module (V-PE) is used...
Gespeichert in:
Veröffentlicht in: | Zhejiang da xue xue bao. Journal of Zhejiang University. Sciences edition. Li xue ban 2025-01, Vol.52 (1), p.70-80 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problem of insufficient local feature extraction of general point cloud classification methods in fine-grained classification tasks, we propose a point cloud-oriented 3D model classification framework, HFE-Net. The Veronese mapping-based point feature enhancement module (V-PE) is used to enhance the point cloud data, so that the network learns higher-order information of the normal and the attitude; the multi-scale context-aware intra-cluster feature enhancement module (CA-IntraCE) utilizes different scales of K-nearest neighbor algorithms and cross-attention to achieve different scales of features and eliminate the loss of information caused by maximal pooling; the inter-cluster feature enhancement module (GSS-InterCE) based on grouped sparse sampling utilizes the furthest-point-sampling (FPS) algorithm to obtain sparse points and the cross-attention to achieve the enhancement of different clusters, so that the network has stronger fine-grained discriminative ability.In the experimental results |
---|---|
ISSN: | 1008-9497 |
DOI: | 10.3785/j.issn.1008-9497.2025.01.008 |