Direct single-shot phase retrieval from the diffraction pattern of separated objects

The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-02, Vol.7 (1), p.10820-10820, Article 10820
Hauptverfasser: Leshem, Ben, Xu, Rui, Dallal, Yehonatan, Miao, Jianwei, Nadler, Boaz, Oron, Dan, Dudovich, Nirit, Raz, Oren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing the phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects. Short X-ray pulses from free-electron lasers enable coherent diffractive imaging of noncrystalline objects such as single molecules. Here, the authors reconstructing full image information from a single-shot diffraction pattern by using two sufficiently separated objects to act as references for each other.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10820