Direction-of-Arrival Estimation over Sea Surface from Radar Scattering Based on Convolutional Neural Network
Conventional direction-of-arrival (DOA) estimation methods are primarily used in point source scenarios and based on array signal processing. However, due to the local scattering caused by sea surface, signals observed from radar antenna cannot be regarded as a point source but rather as a spatially...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-07, Vol.13 (14), p.2681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conventional direction-of-arrival (DOA) estimation methods are primarily used in point source scenarios and based on array signal processing. However, due to the local scattering caused by sea surface, signals observed from radar antenna cannot be regarded as a point source but rather as a spatially dispersed source. Besides, with the advantages of flexibility and comparably low cost, synthetic aperture radar (SAR) is the present and future trend of space-based systems. This paper proposes a novel DOA estimation approach for SAR systems using the simulated radar measurement of the sea surface at different operating frequencies and wind speeds. This article’s forward model is an advanced integral equation model (AIEM) to calculate the electromagnetic scattered from the sea surface. To solve the DOA estimation problem, we introduce a convolutional neural network (CNN) framework to estimate the transmitter’s incident angle and incident azimuth angle. Results demonstrate that the CNN can achieve a good performance in DOA estimation at a wide range of frequencies and sea wind speeds. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13142681 |