Norm-Resolvent Convergence for Neumann Laplacians on Manifold Thinning to Graphs

Norm-resolvent convergence with an order-sharp error estimate is established for Neumann Laplacians on thin domains in Rd, d≥2, converging to metric graphs in the limit of vanishing thickness parameter in the “resonant” case. The vertex matching conditions of the limiting quantum graph are revealed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-04, Vol.12 (8), p.1161
Hauptverfasser: Cherednichenko, Kirill D., Ershova, Yulia Yu, Kiselev, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Norm-resolvent convergence with an order-sharp error estimate is established for Neumann Laplacians on thin domains in Rd, d≥2, converging to metric graphs in the limit of vanishing thickness parameter in the “resonant” case. The vertex matching conditions of the limiting quantum graph are revealed as being closely related to those of the δ′ type.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12081161