Remote Sensing Methods for the Retrieval of Inventory and Bioproductivity Parameters of Forests Using High Resolution Satellite Images

A method for automated processing high spatial resolution satellite images is proposed to retrieve inventory and bioproductivity parameters of forest stands. The method includes effective learning classifiers, inverse modeling, and regression modeling of the estimated parameters. Spectral and textur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dmitriev, Egor, Kozoderov, Vladimir, Donskoy, Sergey, Melnik, Petr, Sokolov, Anton
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for automated processing high spatial resolution satellite images is proposed to retrieve inventory and bioproductivity parameters of forest stands. The method includes effective learning classifiers, inverse modeling, and regression modeling of the estimated parameters. Spectral and texture features are used to classify forest species. The results of test experiments for the selected area of Savvatievskoe forestry (Russia, Tver region) are presented. Accuracy estimates obtained using ground-based measurements demonstrate the effectiveness of using the proposed techniques to automate the process of updating information for the State Forest Inventory program of Russia.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/20197501003