Seleksi Fitur pada Supervised Learning: Klasifikasi Prestasi Belajar Mahasiswa Saat dan Pasca Pandemi COVID-19

Dampak pandemi COVID-19 membuat lembaga pendidikan mengubah metode belajar menjadi pembelajaran jarak jauh secara daring. Banyak perguruan tinggi menyatakan keprihatinannya pada prestasi akademik mahasiswanya selama selama periode tersebut, namun disisi lain terdapat mahasiswa yang merasa puas dan n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jurnal nasional teknologi dan sistem informasi (TEKNOSI) Universitas Andalas 2023-05, Vol.9 (1), p.21-32
Hauptverfasser: Rahmadeyan, Akhas, Mustakim, Mustakim
Format: Artikel
Sprache:eng ; ind
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dampak pandemi COVID-19 membuat lembaga pendidikan mengubah metode belajar menjadi pembelajaran jarak jauh secara daring. Banyak perguruan tinggi menyatakan keprihatinannya pada prestasi akademik mahasiswanya selama selama periode tersebut, namun disisi lain terdapat mahasiswa yang merasa puas dan nyaman. Di masa pasca pandemi terjadi transisi bertahap untuk kembali ke pembelajaran tatap muka.  Ini dilakukan karena pembelajaran tatap muka dianggap lebih efektif dibandingkan pembelajaran daring. Untuk meningkatkan dan memantau kemajuan prestasi akademik mahasiswa demi menghasilkan lulusan yang berkualitas, maka diperlukan analisis terkait perilaku dan prestasi belajar mahaiswa, salah satunya dengan menggunakan teknik data mining. Penelitian ini bertujuan untuk menemukan pola dan faktor yang mempengaruhi prestasi akademik mahasiswa saat dan pasca pandemi COVID-19. Chi-Square dan Mutual Information diterapkan sebagai seleksi fitur untuk menentukan fitur paling berpengaruh pada data. Data dengan fitur optimal akan dilakukan klasifikasi dengan algoritma NBC, CART, RF, dan SVM. Berdasarkan hasil dan analisis yang dilakukan, dapat disimpulkan seleksi fitur efektif dalam meningkatkan kemampuan model dan mempercepat waktu komputasi. Pemodelan dengan 4 algoritma dan 2 metode seleksi fitur menghasilkan CART dengan Chi-Square pada 2 fitur sebagai model terbaik dengan akurasi 89,00%, precision 87,72%, recall 93,57% dan waktu komputasi 0,01814s. Dibandingkan tanpa seleksi fitur, performa CART dengan Chi-Square mengalami peningkatan akurasi sebesar 3% dan waktu komputasi 0,00629s. Chi-Square menjadi seleksi fitur yang efektif pada penelitian ini, yang mana Chi-Square unggul pada rara-rata recall dan waktu komputasi dibandingkan Mutual Information.
ISSN:2460-3465
2476-8812
DOI:10.25077/TEKNOSI.v9i1.2023.21-32