Existence and uniqueness of classical solutions to certain nonlinear integro-differential Fokker-Planck type equations

A nonlinear Fokker-Planck type ultraparabolic integro-differential equation is studied. It arises from the statistical description of the dynamical behavior of populations of infinitely many (nonlinearly coupled) random oscillators subject to ``mean-field'' interaction. A regularized parab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2002-02, Vol.2002 (24), p.1-17
Hauptverfasser: Denis R. Akhmetov, Mikhail M. Lavrentiev Jr, Renato Spigler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear Fokker-Planck type ultraparabolic integro-differential equation is studied. It arises from the statistical description of the dynamical behavior of populations of infinitely many (nonlinearly coupled) random oscillators subject to ``mean-field'' interaction. A regularized parabolic equation with bounded coefficients is first considered, where a small spatial diffusion is incorporated in the model equation and the unbounded coefficients of the original equation are replaced by a special ``bounding" function. Estimates, uniform in the regularization parameters, allow passing to the limit, which identifies a classical solution to the original problem. Existence and uniqueness of classical solutions are then established in a special class of functions decaying in the velocity variable.
ISSN:1072-6691