Pointwise Gradient Estimates in Multi-dimensional Slow Diffusion Equations with a Singular Quenching Term
We consider the high-dimensional equation , extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case. Besides the existence of a very weak solution , with , , we prove some pointwise gradient estimates for a certain range of the dimension , and , mai...
Gespeichert in:
Veröffentlicht in: | Advanced nonlinear studies 2020-05, Vol.20 (2), p.477-502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the high-dimensional equation
, extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case. Besides the existence of a very weak solution
, with
,
, we prove some pointwise gradient estimates for a certain range of the dimension
,
and
, mainly when the absorption dominates over the diffusion (
). In particular, a new kind of universal gradient estimate is proved when
. Several qualitative properties (such as the finite time quenching phenomena and the finite speed of propagation) and the study of the Cauchy problem are also considered. |
---|---|
ISSN: | 1536-1365 2169-0375 |
DOI: | 10.1515/ans-2020-2076 |