Pointwise Gradient Estimates in Multi-dimensional Slow Diffusion Equations with a Singular Quenching Term

We consider the high-dimensional equation , extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case. Besides the existence of a very weak solution , with , , we prove some pointwise gradient estimates for a certain range of the dimension , and , mai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2020-05, Vol.20 (2), p.477-502
Hauptverfasser: Dao, Nguyen Anh, Díaz, Jesus Ildefonso, Nguyen, Quan Ba Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the high-dimensional equation , extending the mathematical treatment made in 1992 by B. Kawohl and R. Kersner for the one-dimensional case. Besides the existence of a very weak solution , with , , we prove some pointwise gradient estimates for a certain range of the dimension , and , mainly when the absorption dominates over the diffusion ( ). In particular, a new kind of universal gradient estimate is proved when . Several qualitative properties (such as the finite time quenching phenomena and the finite speed of propagation) and the study of the Cauchy problem are also considered.
ISSN:1536-1365
2169-0375
DOI:10.1515/ans-2020-2076