Spin dynamics of the block orbital-selective Mott phase
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one-dimension revealed the existence of an orbital-selective Mott phase (...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-09, Vol.9 (1), p.3736-10, Article 3736 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one-dimension revealed the existence of an orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scattering (INS) experiments on the BaFe
2
Se
3
ladder compound confirmed the relevance of the block-OSMP. Moreover, the powder INS spectrum revealed an unexpected structure, containing both low-energy acoustic and high-energy optical modes. Here we present the theoretical prediction for the dynamical spin structure factor within a block-OSMP regime using the density-matrix renormalization-group method. In agreement with experiments, we find two dominant features: low-energy dispersive and high-energy dispersionless modes. We argue that the former represents the spin-wave-like dynamics of the block ferromagnetic islands, while the latter is attributed to a novel type of local on-site spin excitations controlled by the Hund coupling.
Exploring the orbital-selective Mott phase (OSMP) addresses the central issue of electron correlations in the iron-based superconductors. Here the authors theoretically study the dynamical spin structure factor in the block-OSMP regime and unveil momentum dependent characteristics for different spin excitation modes. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-06181-6 |